Acnode - définition. Qu'est-ce que Acnode
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Acnode - définition

ISOLATED POINT IN THE SOLUTION SET OF A POLYNOMIAL EQUATION IN TWO REAL VARIABLES. EQUIVALENT TERMS ARE "ISOLATED POINT OR HERMIT POINT"

Acnode         
·noun An isolated point not upon a curve, but whose coordinates satisfy the equation of the curve so that it is considered as belonging to the curve.

Wikipédia

Acnode

An acnode is an isolated point in the solution set of a polynomial equation in two real variables. Equivalent terms are isolated point and hermit point.

For example the equation

f ( x , y ) = y 2 + x 2 x 3 = 0 {\displaystyle f(x,y)=y^{2}+x^{2}-x^{3}=0}

has an acnode at the origin, because it is equivalent to

y 2 = x 2 ( x 1 ) {\displaystyle y^{2}=x^{2}(x-1)}

and x 2 ( x 1 ) {\displaystyle x^{2}(x-1)} is non-negative only when x {\displaystyle x} ≥ 1 or x = 0 {\displaystyle x=0} . Thus, over the real numbers the equation has no solutions for x < 1 {\displaystyle x<1} except for (0, 0).

In contrast, over the complex numbers the origin is not isolated since square roots of negative real numbers exist. In fact, the complex solution set of a polynomial equation in two complex variables can never have an isolated point.

An acnode is a critical point, or singularity, of the defining polynomial function, in the sense that both partial derivatives f x {\displaystyle \partial f \over \partial x} and f y {\displaystyle \partial f \over \partial y} vanish. Further the Hessian matrix of second derivatives will be positive definite or negative definite, since the function must have a local minimum or a local maximum at the singularity.